# Chemical H2S (3-Wired Type) Transmitter H2S-CD300(LG)



H2S-CD300 (G)-HC



H2S-CD300(LG) (with LCD display)

#### General

H2S-CD300(LG) is a 3wired Electro-Chemical type transmitter which can detect high concentration 0~100 ppm H2S gas.

#### **Features**

- 15years know-how based multipled compensation algorithms keep accuracy and long-term stabilization throughout full operating Temperature and Concentration range.
- 4~20mA (default) 0~20mA,0~10V,2~10V is selctable with switch (0~5V/1~5V is orderable).
- All units verification in factory before delivery.
- Easier mgmt with auto-Zero calibration mode
- Size : 124 x 70 x 43 (mm), 110g, 120g : LCD(o)

X Design or Specification of H2S-CD300(LG) Series might be changed without prior notice.

# H2S-CD300(LG)

## **Application**

Manhole, safety inspection, leak detection, industrial sites, livestock houses, pig houses, poultry farms, portable H2S gas detector, etc.

#### **General Performance**

#### **Operating Temperature range**

-20 ~ 40°C

#### **Operating Humidity range**

15 ~ 90% RH (Non-condensing)

('G' option: operatable 80% RH or more with

Non-Condensing and protect from rustness)

#### **Long Time Output Drift**

<2% signal/month

#### **Storage Temperature**

5°C ~20°C (Higher temp. shorten sensor life.)

#### Measurement

#### **Sensing Method**

Eletro-Chemical type to sense H2S gas

Measurement Range: 0~100ppm

Maximum Overload: 200ppm

Accuracy: ±3% of F.S

**Response Time**: T90: < 30sec, T60: < 9sec

Sampling Interval: 1 second

life Cycle: 2 years.

#### **Electrical Data**

#### **Input Power**

24VDC± 20%, (3-Wired)

#### **Power consumption**

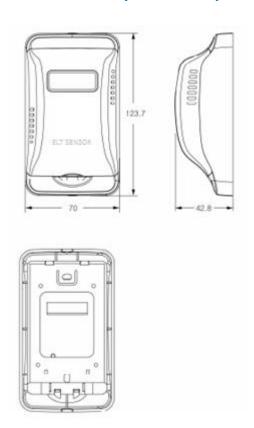
0.7 Watt

## **Wiring Method**

1. VIN+: 24VDC+

2. VIN-: Common-GND

3. A-OUT: Output Signal (Voltage or

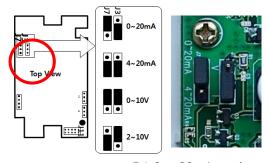

**Current**)



Wire connector.

\*\*Warning: Please careful not to wire power cable into signal output position of terminal block, which leads to damage sensors.

# **Dimensions (unit:mm)**

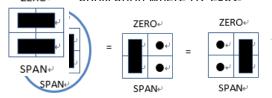



## **Output Signals**



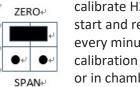
 $4 \sim 20$ mA is default (2  $\sim 10$ VDC or 0  $\sim 20$ mA or 0  $\sim 10$ VDC is selectable with jumper setting change)

# ■ Jumper A (J7, J3) : Set Voltage/Current • [J7,J3] Output Mode




Ex)  $0 \sim 20$ mA setting.

# **Operation Mode selection**




# Automatic Zero Calibration mode-#2rieterror ZERO← application where H2S-gas-



and fixed type H2S-meter installed where always 5ppm or more of H2S gas existing environment.

#### Manual Zero Calibration mode-#3 is used to



calibrate H2S-gas sensors; it start and repeat calibration every minute. Please do calibration at H2S-gas-free area or in chamber with standard 0 ppm H2S gas. (Caution: Please

don't use N2 100% gas, nor do other gases which not include O2 gas.) Return to previous set #1 or #2. After calibration

#### Manual SPAN(50ppm F.S.) Calibration mode-

#4 is used to calibrate H2S-gas sensors after



#3 cablibration; it start and repeat calibration every minute. do calibration with standard H2S-50ppm gas in chamber CMB-10. After

calibration, return to previous set #1 or #2.

#### ■ Analog output calculation

\* Output signal calculation examples

Ex) should the measurement range of  $0^{\sim}10V$  set and measured voltage is 8.10V,  $(8.10V-0V) \times (100ppm/10V) = 81ppm$ 

#### **Cautions on Installation**

- I. Chemical sensors should be kept 5~20°C and better to use in 3 months from purchase not to shorten their lifecycle.
- II. Due to H2S gas' heavy specific gravity, sensor's low position on installation is recommended as default unless convection current by heater or air-conditioner. (H2S gas specific gravity: 1.1895, heavier than air, i.e. the ratio 1.5392g/l of H2S and 1.204g/l of air. (c.f. Density 1.36kg/m3 of H2S).
- III. The sensors are designed to keep lifecycle when installed normal living condition unless effected physically, mechanically or chemically. Sensor-detection part or PCB part should be kept from dirties, water or oil spraying which cause damage and keep Sensors away from the solvent or high concentration organic gas existence or continuous vibration, or impulse from.
- IV. Power should be selected within tolerance and wired into right position, Sensor get damaged when 24V power is inserted into output.
- V. Chemical sensor modules' installation or uninstallation should be done carefully not to pluck away sensor modules; Please grip the upside and downside of PCB. arrow-direction of picture, between 4-pins and 10pins connectors on unplugging sensor-module from main-board little by little, left and right in turn. Vice versa on plugging the sensor-module into main-board.
- VI. Please install or keep sensors away from the places where electro-static or induced electro-magnetic field exists.
- VII. Please make sure to use air-based standard gas on Test Sensor performance.
- VIII. The sensors components should be departed or replaced, or manipulated unless requested or agree by vendor, Please don't touch electrolyte leaked from sensor when it is damaged or broken. Wash out skins with running water when wet by leaked electrolyte.
- IX. Do Calibrations (Zero, #3) or (Zero, #3 and Span #4) if sensor keep giving 5ppm or higher values even when located H2S-gas-free-zone.

# **Cross Connectivity**

| CO 100 pm   | < 3 ppm  |
|-------------|----------|
| H2 300 ppm  | < 3 ppm  |
| SO2 100 ppm | < 20 ppm |
| NO2 5 ppm   | 0.1 ppm  |

# **Occupational Health Exposure Standards:**

| OSHA  | Permissible Exposure Limit:                                                                           |
|-------|-------------------------------------------------------------------------------------------------------|
|       | General Industry Ceiling Limit: 20 ppm                                                                |
|       | General Industry Peak Limit: 50 ppm (up to 10 minutes if no other exposure during shift)              |
|       | Construction 8-hour Limit: 10 ppm, Shipyard 8-hour limit: 10 ppm                                      |
|       | Immediately Dangerous to Life and Health: 100 ppm/ 30 mins                                            |
| NIOSH | Recommended Exposure Limit (10 min ceiling): 10 ppm Immediately Dangerous to Life and Health: 100 ppm |
| ACGIH | Short Term Exposure Limit: 5 ppm / 15 min                                                             |

X Source: OSHA & American National Standards Institute (ANSI Standard No. Z37.2-1972)

| OSHA Anno               | tated Table fo | or H2S gas  |                                                                                      |                                                                      |                                      |                                                  |                                       |
|-------------------------|----------------|-------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|--------------------------------------------------|---------------------------------------|
| Regulatory Limits       |                |             |                                                                                      |                                                                      | Recommended Limits                   |                                                  |                                       |
| OSHA PEL                |                |             | Cal/OSHA<br>PEL                                                                      | NOISH REL                                                            | ACGIH*2019<br>TLV*                   |                                                  |                                       |
| Substance               | Time Ceiling   | Concentrati | Acceptable maximum peak above the acceptable ceiling concentration for an 8-hr shift |                                                                      | (as of<br>10/2/2019)                 | (as of<br>10/18/2019)                            |                                       |
|                         | (TWA)          |             | Concent-<br>ration                                                                   | Maximum<br>Duration                                                  | 8-hour TWA<br>(ST)STEL<br>(C)Ceiling | Up to 10-<br>hour TWA<br>(ST)STEL<br>(C) Ceiling | 8-hour TWA<br>(ST)STEL<br>(C) Ceiling |
| H2S<br>(Z37.2-<br>1966) | -              | 20 ppm      | 50 ppm                                                                               | 10 min once<br>only if no other<br>measurable<br>exposure<br>occurs. | 10 ppm<br>(ST) 15 ppm<br>(C) 50 PPM  | (C) 10 ppm<br>[10 min.]                          | 1 ppm<br>(ST) 5 ppm                   |

※ PEL : Recommended airborne Exposure Limit, REL : Recommended airborne Exposure Limit, TLV : Threshold Limit Value (TLV), STEL : Short Term Exposure Limit, TWA : Time Weighted Average

The most common alarm settings used by instrument manufacturers and users follow the reasoning behind the Cal/OSHA PEL, (as well as guidance contained in OSHA 1910.146 "Permit Confined Spaces"). The instantaneous (peak) low alarm is typically set at 10ppm, the high alarm is set at 15 ppm, the STEL alarm is set at 15 ppm, and the TWA alarm is set at 10ppm.

| Gas              | Health and<br>Safety<br>Executive (HSE)<br>Worker<br>Exposure Limit<br>(WEL) <sup>1</sup> | National Institute for Occupational Safety and Health (NIOSH) <sup>2</sup> Recommended Exposure Level (REL) | Occupational Safety and Health Administration (OSHA) Permissible Exposure Level (PEL) <sup>3</sup> | OSHA Short-<br>Term<br>Exposure<br>Level<br>(STEL) <sup>3</sup> | NIOSH<br>Immediately<br>Dangerous<br>to Life and<br>Health<br>(IDLH) <sup>2</sup> |
|------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Hydrogen sulfide | 5 ppm                                                                                     | 10 ppm                                                                                                      | 20 ppm                                                                                             | 15 ppm                                                          | 100 ppm                                                                           |
| Sulfur dioxide   | 0.5 ppm                                                                                   | 2 ppm                                                                                                       | 5 ppm                                                                                              | 5 ppm                                                           | 100 ppm                                                                           |
| Chlorine         | -                                                                                         | 0.5 ppm                                                                                                     | 1 ppm                                                                                              | 1 ppm                                                           | 10 ppm                                                                            |
| Chlorine dioxide | 0.1 ppm                                                                                   | 0.1 ppm                                                                                                     | 0.1 ppm                                                                                            | 0.3 ppm                                                         | 5 ppm                                                                             |
| Methyl alcohol   | 200 ppm                                                                                   | 200 ppm                                                                                                     | 200 ppm                                                                                            | 250 ppm                                                         | 6,000 ppm                                                                         |

Table 1. Common occupational exposure levels for toxic gas hazards

Sulfur dioxide and hydrogen sulfide, among other toxic gases, are common effluents. Hydrogen sulfide is recognized as a very dangerous byproduct and has been the cause of numerous fatalities in the larger process industry sector.

ChunuiTechnopark 101-909)36,Bucheon-ro 198beon-gil, Wonmi-gu Bucheon-si, Gyeonggi-do, 420-857,Korea Phone. +82-32-719-8055, http://www.eltsensor.co.kr Subject to change without notice. Printed in KOREA

ELT Sensor Corp. All rights reserved.

2022 JAN

