General
Version 1.2

T-110 series is the world's smallest CO₂ sensor module. T-110 is much favored by customers due to its Temperature independence besides the long life cycle.

ELT Sensor Data Sheet for T-110

Features

- Non-Dispersive Infrared (NDIR) technology used to measure CO₂ levels.
- · The world's smallest size
- Pre-calibrated
- Available output: TTL-UART, I2C, ALARM,

PWM/Analog Voltage.

- Gold-plated sensor provides long-term calibration stability.
- Installed re-calibration function
- Operate as ACDL mode (Automatic Calibration in Dimming Light mode).
- Manual Re-Calibration function is executable.

.

• Size: 19mmx29.3mmx8.5mm

• Weight: 5 grams

T-110 Specifications

General Performance

Operating Temperature: 0 ~ 45 °C

Operating Humidity: 0 ~ 85% RH (Non-condensing)

Operating Environment: Residential, Commercial spaces

Storage Temperature : -30° C $\sim 70^{\circ}$ C

CO₂ Measurement

Sensing Method: NDIR (Non-dispersive Infrared)

Measurement Range: $0 \sim 2,000/3,000/5,000/10,000$ ppm (2/3/5/10% is optional)

Accuracy: ±70ppm ±3% of reading (T-110A: ±50ppm ± 3% of reading) for 0~10,000 ppm

 $(\pm 200 \text{ppm} \pm 3\% \text{ of reading up to } 5\%, \pm 200 \text{ppm} \pm 5\% \text{ of reading up to } 10\%)$

Step Response Time (90%): 3 minutes

Sampling Interval: 5 seconds Warming-up Time: 3 minutes

Electrical Data

Power Input: 5.0V ± 5%

Current Consumption: Normal mode: 20mA, Peak: 200mA, Sleep: 0.5mA

Product Derivatives with Functions

Products	Option List
T-110A	ACDL software,10'MCDL, UART, ALARM, Analog Voltage or PWM, 10pin,
T-110L	Low Power, 10' MCDL UART, ALARM, Analog Voltage or PWM, 10pin,
T-110M	10' MCDL, UART, ALARM, Analog Voltage or PWM, 10pin,
T-110G	Resistant to 99% Humidity for Green House,10' MCDL, UART, ALARM, Analog Voltage or PWM, 10pin,

10 minute MCDL (Manual Calibration in Dimming Light) Function is executable in all T-100 Series.

T-110G is for Greenhouse and Stock Raising which need to be resistant to humidity while as T-100L is Low Power model, consumes less than 0.5mA in Sleep mode.

T-110A has ACDL (Automatic Calibration in Dimming Light) software in Sensor for Indoor Air-Quality Monitoring which could face ambient status with period. (2day at first, and every week as default).

'Technical Datasheet for T-110 series' could be provided by contacting on Sales Rep.

Output Pin Map

Pin No.	T-110A	T-110A(PWM Option)				
1	+5V VCC					
2	G	GND				
3	UAF	UART-RX				
4	No Output	PWM (Pulse Width Modulation)				
5	UAF	UART-TX				
6	Alarm (Op	Alarm (Open Collector)				
7	Analog Voltage Output	No Output				
8	SCL					
9	SDA					
10	MCDL					

UART

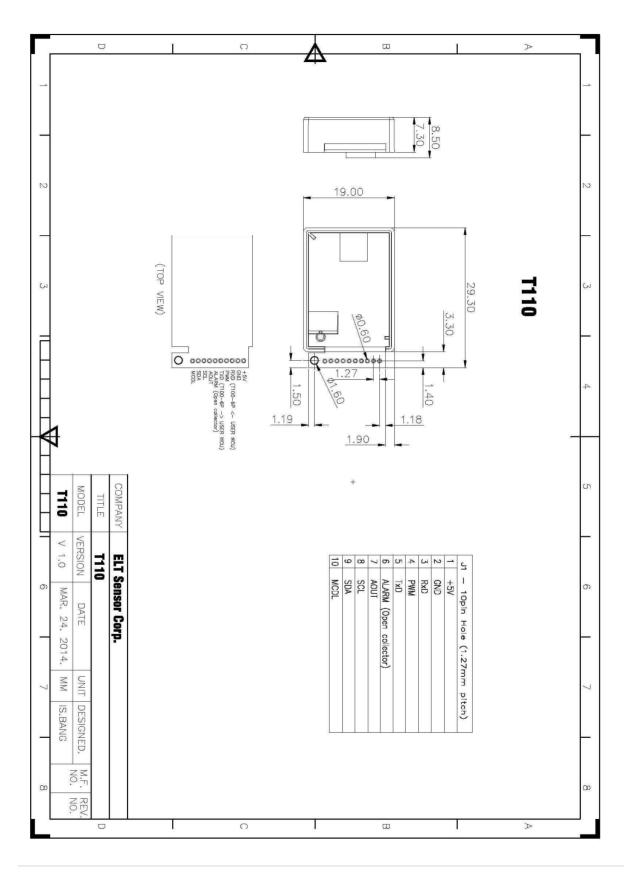
38,400BPS, 8bit, No parity, 1 stop bit, TTL Level Voltage (for inspection use)

I2C (J-12:P3&P4)

Slave mode only, Internal pull up resister

TTL Level Voltage : $0 \le V_{IL} \le 1.2$, $3.5 \le V_{IH} \le 5$, $0 \le V_{OL} \le 0.4$, $4.2 \le V_{OH} \le 5$ (Volt)

PWM


 t_H = 2 msec (Start) + 1,000 msec x (Measurement_(ppm) / Range_(ppm)), t_L = 2,000 ppm - t_H (Period : 2,000 ppm)

Analog Voltage: 0.5~4.5V

ALARM

Open Collector type, 1,000 ppm ≤ Alarm ON, 800 ppm ≥ Alarm OFF

Cavity Dimensions (unit: mm)

10 minute Manual Re-Calibration Function.

ACDL mode (Automatic Re-Calibration in Dimming light with period)

Automatic Re-Calibration software is installed for T-110A, recommended for Indoor Air-Quality Monitoring which could face ambient status with period. (2day at first, and every week as default)

10 minute Manual Re-Calibration Function (10' MCDL function).

Method 1. Apply TTL Low signal to pin-10 for 10 minutes, or

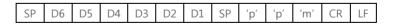
**To activate MCDL function, the user's application must be designed to give Low Active Signal to pin-10

Method 2. Let Sensor install on Jig Board (**TRB-100**: **Test and Recalibration Board**) with ambient air-flow condition and execute by moving jumper following Manual, which is downloadable on the website.

Method 3. Send String command set below to RXD-pin of Sensor on Emulation program.

DK-100 (Download kit, with Emulation program 'ELTWSD') is available.

Output Descriptions


Analog Voltage Output Descriptions

Measured Voltage $0.5V\sim4.5V$ match proportionally to $0\sim2,000$ each for 2,000 ppm scale sensor And any of $0\sim3,000$ or 5,000 or 10,000 ppm scale sensor could be set by designating on sale.

Therefore 4.5V will match 2,000 or 3,000 or 4,000 or 10,000 ppm or 2% or 3% or 5% or 10% each.

UART Descriptions

Data Format

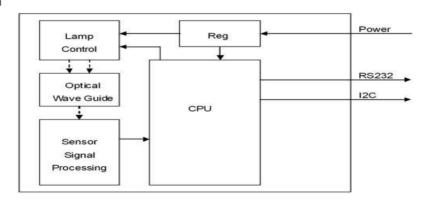
SP	Space: 0x20		
D6 ~ D1	6 byte CO2 density string		
SP	Space: 0x20		
'ppm'	'ppm' string		
CR	Carriage return : 0x0D		
LF	Line feed : 0x0A		

Above 13byte consist by $\langle SP \rangle$,6 byte hexadecimal digits, $\langle SP \rangle$,0x70 0x70 0x6D, $\langle CR \rangle \langle LF \rangle$, where decimal '0' (corresponds to hexadecimal digit '0x30') is replaced by space (corresponds to hexadecimal digit '0x20'),

EX) 1,255 ppm, results '0x20 0x20 0x20 0x31 0x32 0x35 0x35 0x20 0x70 0x70 0x6D 0x0D 0x0A', which displays '___1255_ppm < CR > < LF > 'on screen.

I2C Communication (Only Slave Mode Operation)

Internal pull up resister


Slave Address: 0x31, Slave Address Byte: Slave Address(0x31) 7 Bit + R/W 1 Bit

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	1	1	0	0	0	1	R/W
U	1	1	U	U	U	1	Bit

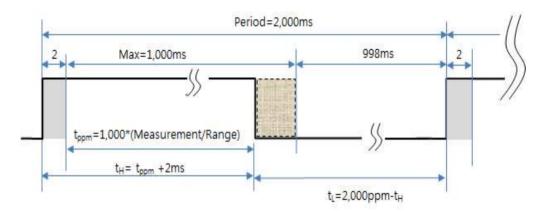
R/W Bit : Read = 1/Write = 0

When reading the data, Slave Address Byte is 0x63, When writing the data, Slave Address Byte is 0x62.

Block Diagram

Transmission Sequence in Master

- 1) I2C Start Condition
- 2) Write Command(Slave Address + R/W Bit(0) = 0x62) Transmission and Check Acknowledge
- 3) Write Command(ASCII 'R': 0x52) Transmission and Check Acknowledge
- 4) I2C Stop Command
- 5) I2C Start Command
- 6) Read Command(Slave Address + R/W Bit(1) = 0x63) Transmission and Check Acknowledge
- 7) Read 7 Byte Receiving Data from Module and Send Acknowledge (Delay at least 1ms for reading each byte)


Configuration	CO ₂	reserved	reserved	reserved	reserved
1 Byte	2 Byte	0x00	0x00	0x00	0x00

							\
0	0	0	0	1	0	0	0

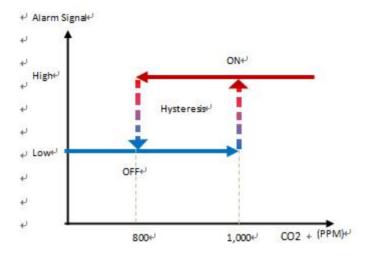
In need of detail protocol specification and time sequence, **'12C programming guide'** could be provided by contacting Sales Rep.

PWM Descriptions

- * Measurement_{(ppm) =} $(t_H-2msec)/1000msec \times Range_{(ppm)} (t_H : High Pulse Width)$
- * Range_(opm): 2,000/3,000/5,000/10,000 ppm (20,000/30,000/50,000/100,000 is optional.)

EX) t_H (High Pulse Width) calculation for 400 ppm in 2,000 ppm Range.

*Measurement_(ppm) = 400 ppm = $(t_H-2ms)/2,000msec x Range_{(ppm)}$,


 $*t_H = 1,000 \text{ msec } * (400 \text{ ppm} / 2,000 \text{ ppm}) + 2 \text{msec} = 202 \text{msec}$

(cf: T_L = Period - $t_{H=}$ 2,000 ppm - 202 msec = 1,798 msec.)

Alarm Descriptions

Alarm signal operates as Open Collector type and send TTL on signal since CO2 measured value beyond 1,000 ppm until it go down to 800 ppm. It is designed to be activated when CO2 measured value surpass 1,000 ppm and deactivated down to 800 ppm to avoid unwanted rapid switching by hysteresis effect.

1,000 ppm ≤ Alarm ON, 800 ppm ≥ Alarm OFF

DK-100 series is available for customer to enable to change alarm activation & deactivation point.

ELT SENSOR Corp.

Chunui Technopark 101-909) 36, Bucheon-ro 198beon-gil, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-857, Korea Phone. +82-32-719-8055, http://www.elti.co.kr Subject to change without notice. Printed in KOREA 2014 ELT Sensor All rights reserved. 2014. April